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Abstract

A differential detection technique for MPSK, which uses a multiple symbol

observation interval, is presented and its performance analyzed and

simulated. The technique makes use of maximum-likelihood sequence

estimation of the transmitted phases rather than symbol-by-symbol detection

as in conventional differential detection. As such the performance of this

multiple symbol detection scheme fills the gap between conventional (two-

symbol observation) differentially coherent detection of MPSK and ideal

coherent of MPSK with differential encoding. The amount of improvement

gained over conventional differential detection depends on the number of

phases, M, and the number of additional symbol intervals added to the

observation. What is particularly interesting is that substantial performance

improvement can be obtained for only one or two additional symbol

intervals of observation. The analysis and simulation results presented are

for uncoded and trellis coded MPSK.
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1.0 Introduction

It is well known that, in applications where simplicity and robustness of

implementation take precedence over achieving the best system performance,

differential detection is an attractive alternative to coherent detection. Aside

from implementation considerations, it is also possible that the transmission

environment may be sufficiently degraded, e.g., a multipath fading channel,

that acquiring and tracking a coherent demodulation reference signal are

difficult if not impossible. Here again, differential detection is a possible, and

perhaps the only, solution.

In the past, differential detection of multiple-phase-shift-keying (MPSK)

has been accomplished by comparing the received phase in a given symbol

interval with that in the previous symbol interval and making a multilevel

decision on the difference between these two phases [1]. An implementation

of such a receiver and the analysis of its error rate performance on an additive

white Gaussian noise (AWGN) channel may also be found in [2: Chap. 5]. In

arriving at the results in [1,2], the assumption was made that the received

carrier reference phase is constant over at least two symbol intervals and thus

has no effect on the decision process when the above-mentioned phase

difference is taken. This assumption is crucial to the analysis but is also

realistic in many practical applications. Also, since the information is carried

in the difference between adjacent received phases, the input information

must be differentially encoded before transmission over the channel.

Although differential detection eliminates the need for carrier acquisition

and tracking in the receiver, it suffers from a performance penalty (additional

required SNR at a given bit error rate) when compared with ideal (perfect

carrier phase reference) coherent detection. The amount of this performance

penalty increases with the number of phases, M, and is significant for M > 4.

For example, at a bit error probability Pb = 10-5, differentially detected BPSK

(often abbreviated as DPSK) requires about 0.75 dB more bit energy-to-noise

ratio (Eb/N0) than coherently detected BPSK. For QPSK (M = 4), the

difference in Eb/N 0 between differential detection and ideal coherent

detection at Pb = 10-5 is about 2.2 dB. Finally for 8PSK, the corresponding

difference in Eb/N 0 performance between the two is greater than 2.5 dB.

Thus, it is natural to ask" Is there a way of enhancing the conventional
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(two symbol observation) differential detection technique so as to recover a

portion of the performance lost relative to that of coherent detection, and yet

still maintain a simple and robust implementation? Furthemore, if this is

possible, what is the tradeoff between the amount of performance recovered

and the additional complexity added to the conventional differential

detection implementation? The answers to these questions stem from the

idea of allowing the observation interval over which symbol decisions are

made to be longer than two symbol intervals while at the same time making

a joint decision on several symbols simultaneously as opposed to symbol-by-

symbol detection. As such, one must extend the previous assumption on the

duration of time over which the carrier phase is constant to be commensurate

with the extended observation interval. For observations on the order of

three or four symbol intervals, this is still a reasonable assumption in many

applications.

The theoretical framework in which we shall develop this so-called

multiple-bit differential detection technique is the maximum-likelihood

approach tO statistical detection: _the next section, we derive the

appropriate maximum-likelihood algorithm for differential detection of

uncoded MPSK and show how the conventional technique is a special case of

this more general model. Since, as mentioned above, we will be making joint

symbol decisions in this new configuration, the technique is a form of

maximum-likelihood sequence estimation, although no coding of the input

information is implied. Later on in the report, we extend the theory

developed here to the case of trellis-coded MDPSK.

2.0 Maximum-Likelihood Detection of MPSK over an AWGN Channel

Consider the transmission of MPSK signals over an AWGN channel.

The transmitted signal in the interval kT < t < (k+l)T has the complex form

si = 2_-Pe s_k (1)

where P denotes the constant signal power, T denotes the MPSK symbol

interval, and (_k the transmitted phase which takes on one of M uniformly

distributed values [3m = 2_m/M; m = 0, 1, ..., M-1 around the unit circle. The

corresponding received signal is then

r_ = s_e se* + nk (2)

where n k is a sample of zero mean complex Gaussian noise with variance
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2_ N (3)
T

and Ok is an arbitrary phase introduced by the channel which, in the absence

of any side information, is assumed to be uniformly distributed in the

interval (-g,_).

Consider now a received sequence of length N and assume that Ok is

independent of k over the length of this sequence, i.e., Ok = 0. Analogous to

(2), the received sequence r_.is expressed as

r_= se j' +_n (4)

where rk, sk, and n k are, respectively, the kth components of the N-length

sequences r_,s_, and n. For the assumed AWGN model, the a posteriori

probability of r given _ and 0 is

where

i=O

Simplifying the right hand side of (6) results in

where

N-1 8/-1 tUr--s-e1_= + - 2Ro rk__._i cos 0

- 2 Imt i__° r_-d_-ilsin O

N-I_ 2 IN-I • I

=

OI =tan -1

(N-I *

(7)

(8)
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Since 0 has been assumed to be uniformly distributed, then the a

posteriori probabability of r given s is simply

p(rls_)= _'_ p(rls_,O)p(O)dO

r 1 N-_ 2-'h /"1 Iw-z • /'_
_. 12.mz exp'-x-Z/_2 _[]rk-,_ +['+-,I

(2z_y.) I, z°r.i=0 J _,a.li=0 IJ

(9)

where I0(x) is the modified Bessel function of the first kind. Note that for

MPSK, Is k 12 is constant for all phases. Thus, since I0(x) is a monotonic

function of its argument, maximizing p(£1 _ over s is equivalent to finding

llv-I • 12

maxlEr ' ,s+,I (a0)
-" ll--0 - -I

which, using (1), results in the decision rule

IN-1 . f:'

c,,oo o 1 i maximum (11)

where _ is a particular sequence of the Pm'S. Note that this decision rule has

a phase ambiguity associated with it since the addition of an arbitrary fixed

phase, say %, to all N estimated phases _k,¢_-_ ..... ¢_-N÷1 results in the same

decision for _. Thus, letting _a = _k-N+l, the above decision rule can be

alternately expressed as choosing the sequence _ that maximizes the statistic

a]N-I 12

7_ _ r._ie-/(#+-i-O+-_l+l 1

l i=O I

(12)

To resolve the above phase ambiguity, one should differentially encode

the phase information at the transmitter. Letting

¢k = _+-_++ Aqk (13)

where now A(_k denotes the input data phase corresponding to the kth

transmission interval and (_k the differentially encoded version of it, then
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N-i-2

=
_=0

and the above decision statistic becomes

(14)

I N-i-2

N-2 -J E Ll#k-i-m

rl = rk_s+l + Y_rk_ie m=0 (15)
i=O

This statistic implies that we observe :he received signal over N symbol time
intervals and from this observation make a simultaneous decision on N-1

data phases.

Some special cases of (15) are of interest. For N = 1, i.e., an observation of

the received signal over one symbol interval, (15) simplifies to

=lr l' (16)
which is completely independent of the input data phases and thus cannot be

used for making decisions on differentially encoded MPSK modulation. In

fact, the statistic of (16) corresponds to the classical case of noncoherent

detection which is not applicable to phase modulation.

Next, let N = 2, in which case (15) becomes

o=Ir,-,+ f+ 2Re{r:[-, e-sa.'} (17)

This results in the well-known decision rule for conventional MDPSK,

namely,

choose A_ if Re{rkr[_le -iAik} is maximum (18)

which is implemented in complex form as in Figure 1. Thus, we see from

this approach that conventional differential detection of MPSK is the

optimum receiver in the sense of minimizing the symbol error probability

given that the unknown carrier phase is constant over two symbol times.

This result is not new other than, perhaps, the approach taken to demonstrate

it.

Now, to see a new structure, we consider (15) for N = 3. Here we have
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___2+ _k_l12+ [r,12+ 2 Re{ rkr__ue -_'a'k+ a,,_l,}

+ 2Re{rk_lr__2e-Ja'k-l}+ 2 Re{rk_,rk'_le -ja#'}

Thus, the decision rule becomes

choose AS, and AS,_,/f Re{rtrk'_te -ja#`

(19)

+ rk_lr__2e -_a;k-l" + rkr__2e-jcaik÷ai_-_)} is maximum

(20)

Note that the first and second terms of the metric used in the decision rule of

(20) are identical to those used to make successive and independent decisions

on A#_ and A#k_ 1, respectively, in conventional MDPSK. The third term in

the optimum metric is a combination of the first two and is required to make

an optimum joint decision on A#k and A#__,.

Clearly, a receiver implemented on the basis of (20) will outperform

conventional MDPSK. Before demonstrating the amount of this performance

improvement as a function of the number of phases, M, we first discuss the

implementation of the optimum N = 3 receiver. Figure 2 is a parallel

implementation of the decision rule of (20). It should be noted that the M 2

phasors 1 needed to perform the phase rotations of the output rk(rk_2)* can

be obtained using a matrix which performs all possible multiplications of the

M phasors e-Jl30, e-j_l, ..., e-Jl3M-1 with themselves. Figure 3 is a series

implementation of the same decision rule which, although simpler in

appearance than Figure 2, requires envelope normalization and additional

delay elements.

3.0 Bit Error Probability Performan¢_

To obtain a simple upper bound on the average bit error probability, Pb, of

the proposed N-bit detection scheme, we use a union bound analogous to that

used for upper bounding the performance of error correction coded systems.

In particular, the upper bound on Pb is the sum of the pairwise error

probabilities associated with each (N-1)-bit error sequence. Each pairwise

error probability is then either evaluated directly or itself upper bounded.

1In reality, only M phasors are needed since the sum angle &_k + ASk_1 when taken

modulo 2x ranges over the set _), _1,'", _M-1-
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Mathematically speaking, let A____0= (AO_,A0__I,...,AO___÷2) denote the sequence

of N-1 information phases and A_ = (A_,A___,...,A_,_M÷ 2) be the

corresponding sequence of detected phases. Let u be the sequence of b =

(N-1)log2M information bits that produces A_____at the transmitter and u the

sequence of b bits that result from the detection of A_____.Then,

1 1

where w(u_,__)denotes the Hamming distance between _uand __ and

Pr{O > r/IA_}denotes the pairwise probability that A_____is incorrectly chosen

when indeed A0 was sent. The decision statistic 7/ is defined in (15) and the

corresponding error statistic _ is identical to (15) with each A0k replaced by

A_. For symmetric signalling sets (such as MPSK), (21) satisfies a uniform

error probability (UEP) criterion, i.e., the probability of error is independent of

which input phase sequence A__.00is chosen as the correct sequence. Under

these conditions, (21) simplifies to

1

PbN(N 1)log2M E w(_u,__)Pr{_> t/IA_} (22)
- ,l;,.a#

where AO is any input sequence (e.g., the null sequence (0,0,...,0) = 0).

3.1 Evaluation of the Pairwise Error Probability

To compute Pr{_ > r/IAO}, we use the approach taken in [3] for evaluating

the performance of noncoherent FSK. It is convenient to define

N-i-2 N-i-2

N-I -! E dok-i-m N-I -' E d_k-i-m

= ...o ; ._-o
i=O i=0

in which case,

(23)

(24)
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Then, the pairwise error probability Pr{0 > r/Izi..._}is derived in Appendix A as

Pr{O > rllAO}= 211- Q('_]b,x]-a) + Q('_,'_)] (25)

where Q(tz,]3) is Marcum's Q-function [4] and

with Es = PT denoting the energy per data symbol and

(26)

N-i-2 N-i'2

N-I ) a¢k-i-m

8 = _e .=0 = _e ,,=0 (27)
i=0 i=O

In (27), it is understood thai the summation in the exponent evaluates to

zero if the upper index is negative.

Note that for any given N, M, and input data sequence A_.__$,8 can be

evaluated for each error sequence A.._. We now consider the evaluation of

(22) and (25) for some special cases.

3.2 Case 1: Conventional DPSK (N = 2, M = 2)

From (27), we immediately get _ = 0 and thus from (26)

Substituting (28) into (25) gives

IA " iF 1 ( _ 0)+

From the definition of the Q-function,

(28)

(29)

O(a,O) = 1; Q(O,fl) = exp - (30)

Since for the binary case the pairwise error probability is indeed equal to the

bit error probability, we have from (29) and (30) that
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1
 :v pt- j

which is the well-known result for DPSK.

(31)

3.3 Case 2: N = 3, M = 2

Here there are three possible error sequences of length 2. The pertinent

results related to the evaluation of (26) and (27) are given below:

0 /_" -1

zr o +1

NoL2

N0t2

NoL2 J (32)

Since the Hamming distance w(u,u_') is equal to 1 for the first two error

sequences and is equal to 2 for the third sequence, then using (32) in (25) and

(26), the upper bound on bit error probability as given by (22) is evaluated as

El' 3 E b 3 El, 3 El' 3

(33)

To see how much performance is gained by extending the observation

interval for differential detection from N = 2 (conventional) to N = 3, we

must compare (33) to (31). Due to the complex form of (33) this comparison is

not readily obvious without resorting to numerical evaluation. On the other

hand, by examining the asymptotic (large Es/N0) behavior of (33) we can get

an immediate fix on this gain.

When both arguments of the Q-function are large, the following

asymptotic approximations are valid [6]:
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{<°:/>')Q((z,/])=I 1 /] exp ; a

Q(o:,_) = _ _ -_ exp • ; _ >> a >> 1

Using these approximations, (25) becomes

(34)

1 1 •

or, from (26),

(35)

- ] //_/ (N+&=-I_r
_{'_>'_'_}-_ttN+W,__i<_rj +LN__N_i_i_

- ,ri D+isi:_;r::_. -I@}

For N = 3 and M - 2, Iii I = 1 from (32). Thus, (33) becomes

(36)

'Pb< --exp ---" (37)

, 2 No

Comparing (37) with (31), we observe that the factor in front of the term in

brackets in (37) represents a bound on the improvement in performance

obtained by increasing the memory of the dedsion by one symbol interval

from N = 2 to N = 3.

3.4 General Asymptotic Results

In the general case for arbitrary N, the dominant terms in the bit error

probability occur for the sequences that result in the minimum value of N -
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181. One can easily show that this minimum value will certainly occur for

the error sequence A____#having N-1 elements equal to the correct sequence A_

and one element with the smallest error. Thus,

where

mm (N-181)= N-IN- I+ e]C"k-A;k'm_ I

= N-4(N- 1) 2 + (N- 1)(2- d2m_)+ 1

= N-I &l,.,

d,_ = 4sin 2 (A¢+ - A_+)_ = 4 sin2_____
2 M

(38)

(39)

Also note that for 181 = 18 Ima x, (26) reduces to

{_} = 2_o IN + 2_/-N- 1sinai (40)

Thus, the average bit error probability is approximately upper bounded by

Pb < (N- 1)log2M a (_u,_)

X2_N_(4 N+I'_" ./exp'-E. {N_,_I,,..)}[ 2N0'

(41)

where w(u,_) corresponds only to those error sequences that result in 151 max.

For the binary case (M = 2), we have from (39) that d,_ = 4 and hence

N-ISIm,,,= 2. Similarly, it is straightforward to show (see Appendix B) that the

sum of Hamming distances required in (41) is given by
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,I'2(N- 1);
A_._A_V(--U'--U)-- IX; N--2

Thus, (41) simplifies to

N>2
(42)

, {..}]
_ No

which is the generalization of (37) for arbitrary N 2.

Eq. (43) has an interesting interpretation as N gets large.

of (43) as N --> o_, we get ....

pb< 1 exp_E_a.._

which can be expressed in terms of the asymptotic expansion of the

complementary error function,

Taking the limit

by

"2 "- . 2 1 2

P_<erfc. _'-_
- _/N o

(45)

(46)

For coherent detection of binary PSK (BPSK) with differential encoding and

decoding, the bit error probability performance is given by [2: Chap. 5]

Pb= Ierfc_NE_o _ 1-12" erfc"E_"/'_oJ
(47)

which has an asymptotic upper bound identical to (46). Thus, as one might

expect, the performance of multiple symbol differentially detected BPSK

approaches that of ideal coherent detection BPSK with differential encoding

in the limit as the observation interval (decision memory) approaches

infinity.

2Note that (43) is not valid for N = 2 since in that case 181max = o [see (38) and (39)] and

thus the inequalities in (34) are not satisfied.
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A similarlimitingbehavior as the above may be observed forother values

of M. In particular,itcan be shown (seeAppendix B) thatforM > 2 and a

Gray code [2]mapping of bitsto symbols, the sum of Hamming distances

corresponding to [Slma x isgiven by

_4(N-1); N>2
_w(u'-_) = 12; N=2

a#,ma_

Using (48) in (41), we get (for N > 2)

where, from (38) and (39),

161.u= _(N- 1)2+ 2(N - 1)(1- 2sin 2_) + 1

(48)

(49)

(50)

For N = 2, the upper bound on bit error probability becomes

(l°g2 2M V M J

X exlH- sln _.

"( N o 2MJ (51)

As N gets large, ]_ ---)N-2sin2 M and (49) reduces to

exp--:E_ sin2-_7_.1 ___- 1 erfc( E/-_-,sin______

- (log2M) _r E" sin2--_--_

(52)
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which is identical to the asymptotic bit error probability for coherent

detection of MPSK with differential encoding and decoding (see [2: Eqs. (5-91),

(5-92) and (5-113)]) 3 .

For example, for QPSK (M--4), the symbol error probability is given by

[2: Eq. (5-115)]

Since for a Gray code bit to symbol mapping

(53)

Pb-= P" = P' (54)
log2M 2

then (54) together with (53) has an asymptotic upper bound identical to (52).

Figures 4, 5, and 6 are illustrations of the upper bounds of (49) and (51)fo r

M = 2, 4, and 8' respectively. In each figure, the length (in MPSK symbols) of

the observation interval, N, is a parameter varying from N = 2 (conventional

MDPSK) to N = ** (ideal coherent detection). Also indicated on the figures

are computer simulation results corresponding to the exact performance. We

observe that, for example, for binary DPSK, extending the observation

interval from N = 2 to N = 3 recovers more than half of the Eb/N 0 loss of

differential detection versus coherent detection with differential encoding.

For M = 4, the improvement in Eb/N 0 performance of N = 3 relative to N = 2

is more than I dB which is slightly less than half of the total difference

between differential detection and coherent detection with differential

encoding.

4.0 Application to Trellis Coded MDPSK

In this part of the report, we extend the idea of multiple differential

detection of MPSK to trellis coded modulations (TCM). We will show that a

3It should be noted that the result in (52) can be obtained by observing that, for large N, (40)

satisfies _b >> "_b- _/a > 0. In this case, (25) can be approximated by [5: Appendix A]

Pr{_ > r/lA_}= l[1-Q(,c_,-,cra)+Q(-_-a,,_)]_= 1 ,. (,_---q_'_

Using this relation in (22) gives the asymptotic bit error probability in (52).
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combination of a multiple trellis coded modulation (MTCM) [7] with

multiplicity equal to N-1 combined with multiple 4 symbol differential

detection can potentially yield a significant improvement in performance,

even for small N, over that corresponding to conventional trellis coded

MDPSK.

The analysis technique that will be employed to obtain upper bounds on

the bit error probability performance of the system is equivalent to that used

in [8] to assess the performance of conventional trellis coded MDPSK on a

fading mobile satellite channel. In fact, it will be shown that the results

obtained here have an interesting similarity to those obtained in [8] once an

association is made between the squared Euclidean distance measure per

trellis branch for conventional differential detection and the equivalent

distance measure per trellis branch for multiple symbol differential detection.

5.0 System Model

Figure 7 is a simplified block diagram of the system under investigation.

Input bits occurring at a rate R b are passed through a rate nk/(n+l)k multiple

trellis encoder (k is the multiplicity of the code) producing an encoded bit

stream at a rate R s = [(n+l)k/nk]R b. Next, the encoded bits are divided into k

groups of n+l bits each and each group is mapped into a symbol selected

from an M = 2 n+l - level PSK signal set according to a set partitioning

method for multiple trellis codes [7] analogous to that proposed by

Ungerboeck [9] for conventional (unit multiplicity) codes. Since the MDPSK

symbol rate is Rb/n, it is reasonable, from a conservation of bandwidth

standpoint, to compare the performance of this system to an uncoded M = 2 n

level DPSK system with the identical input bit rate.

At the receiver, the noise-corrupted signal is differentially detected and the

resulting symbols are then inputted to the trellis decoder which is

implemented as a Viterbi algorithm. In selecting a decoding metric, a tradeoff

exists between simplicity of implementation and the optimality associated

with the degree to which the metric matches the differential detector output

statistics.

4One must be careful not to confuse the multiplicity of the trellis code with the

multiplicity of the differential detection scheme although, as we shall soon see, the two

are indeed related.
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For the case of uncoded MDPSK, a metric based on minimizing the

distance between the received and transmitted signal vectors is optimum in

the sense of a minimum probability of error test. The specific forms of this

metric for conventional and m_tiple differential detection were described in
Section .....2.0. For conventional trellis-coded MDPSK, the metric takes on the

form of a minimum squared Euclidean distance metric. For multiple symbol
detection of MTCM, the form of the metric is q_t_different. Neyertheless, as

we shall soon see, by asuitable modification of the multiple trellis code

design, the appropriate metric can _ converted_once again into a minimum

squared Euclidean distance metric. The so-called "equivalent" multiple

trellis code that results from this modification then becomes the key tool used

for analyzing the performance of the system.

6.0 Analysis Model

We denote a coded symbol sequence of length N s by

x = (x, xz,...,x,_,) (55)

where the kth eiement 0fx_, n_ely, xk, repr_ents the transmitted MPSK

symbol in the kth transmission interval and, in general, is a nonlinear

function of the state of the encoder and the nk information bits at its input.

Before transmission over the channel, the sequence x is differentially encoded

producing the sequence s. In phasor notation, Sk and Sk+ 1 can be written as

$k = 2N_eJ#t

= s xk÷,= 4" d = 4- e

where E s = rE b is the energy per MDPSK symbol and

(56)

xt = e ja#t (57)

is the phasor representation of the MPSK symbol ACt assigned by the mapper

in the kth transmission interval.

The corresponding received signal in the kth transmission interval is

given by (2) with sk now defined as in (56) and the noise sample, n k, defined

as before with variance given by (3).
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Consider now a received sequence of length N s and assume that Ok is

independent of k over the length of this sequence, i.e., Ok = 0. Then, the

received sequence _r.is expressed as in (4) where rk, Sk, and n k are,

respectively, the kth components of the Ns-length sequences r, s_, and n.

Since the detection scheme will be independent of 0, we can furthermore set

0 = 0 without any loss of generality.

To apply the notion of multiple symbol differential detection to trellis

coded MPSK, the decision statistic of (15) must be associated with a branch in

the trellis diagram. To do this, w_ construct a multiple trellis code of

multiplicity k = N-1. (The procedure for designing this code will be discussed

later on in the publication.) Thus, we can envision the transmitted sequence,

x_, of (55) as being partitioned into B = Ns/k = Ns/(N-1) subsequences 5, i.e.,

_x= (_x°),__¢2),..... x_(B)) (58)

with each subsequence x(i) = (Xil, xi2,...,Xik) representing an assignment to a

trellis branch. Similarly, a received sequence, r_, of length N s is associated

with a path of length B branches in the trellis diagram. Once this

association is made, computation of bit error probability for the system

follows along the lines of the approach taken in [7]. The details of the analysis

are presented in the following sections.

7.0 Derivation of Pairwise Error Probability Bound

To find an upper bound on the average bit error probability performance of the

system, we must first find the pairwise error probability which represents the

probability of choosing the coded sequence _ = (x,,_2,...,_,) = (_c,),_c2) ..... _ca)) instead

of x_.= (x_,x 2, .... x_,) = (x°),x_ ¢2)..... x.¢s)). Letting Tli denote the maximum-likelihood

metric for the correct data phase sequence on the ith trellis branch and computed in

accordance with (15), then the pairwise error probability is given by

'1tP(_x pr i> 77
L i=1 i=1 I_)

(59)

5Since Ns is arbitrary, we can choose it such that Ns/(N-i ) is integer.
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Here _ denotes the metric computed for the data phase sequence associated with

the ith trellis branch of the incorrect path, A_ denotes the transmitted data

phase sequence for the correct path, and B is the length (in branches) of the

correct and incorrect paths. Also, since the channel is additive white Gaussian

noise (AWGN), the summations in (59) represent sums of independent random

variables.

An exact evaluation of (59) in closed form is difficult if not impossible. At

first glance it might appear that the decision variable in (59) is a special case of the

quadratic form given in [10: E-q. (4B.1)] and thus the pai-rwise error probability

would be given by [10: Eq. (4B.21)]. Unfortunately, however, the development in

[10: Appendix 4B] requires that the second central _m°ments of the complex-

valued random variables 7/i, _; i --- 1,2,...,B be independent of i. While indeed

the variances of these random variables are independent of i, the covariance of

1/i and _i is directly proportional to 8i (see Eq. (A-5)) defined by

N-n-2 N-n-2

a N-1 j Z._ -k-.-.- vk-.-.Ja N-l S Z.-__s_M
m----O

a,=__e ,=0 =,'_e (60)
x=O s=O _

and thus depends on i. In (60), the data phases that appear in the exponent are

the elements of A# o'7 and A 6 0'_ which denote the ith subsequences of A.___and A___,

respectively.

In principle, then, there are two approaches one can take to evaluating (59).

The first is to derive a Chernoff bound [11] on (59) using a method similar to that

taken in[8].=This method has=theadvantage (as we ..................shall soon see) of enabling

the upper bound on bit error probability to be obtained using the transfer

function bound approach applied to trellis coded modulations in [7]. It has the

disadvantage (typical of Chernoff bounds) of resulting in a loose upper bound on

bit error probability.

The second approach is to try to directly approximate (rather than upper

bound) the result in (59) for large signal-to-noise ratio (SNR). In Section 3.0 we

saw for the uncoded that, despite the fact that we were able to exactly evaluate the

pairwise error probability (equivalent to evaluating (59) for a path consisting of a

single trellis branch, i.e., B = 1), we eventually approximated that result for large

SNR and showed that the results agreed extremely well with those obtained

from simulation. Also, the asymptotic (large SNR) form of the bit error

probability expression had the advantage of allowing direct comparison with an
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analogous expression for conventional (no multiple symbol observation)

MDPSK. The disadvantage of this approach is that the expression for the

approximate pairwise error probability that results cannot be put in a form that

allows evaluation of the upper bound on bit error probability by the transfer

function bound approach. Thus, in this part of the report, we shall consider

both approaches because of their respective merits.

7.1 A Chernoff Bound on Pairwi_¢ Error Probability

A Chernoff upper bound [6] on the pairwise error probability of (59) is

evaluated in Appendix C with the result

where 8i is given by (60).

The expression in (61) bears a striking resemblance to that which characterizes

the pairwise error probability of conventional differential detection of trellis

coded MDPSK. In particular, letting Pn = 1 (no fading) and _. = 2_.0 in [8: Eq. (25)],

we get

s exp{

P(__..-->x_')_
ii#xi

^ 2
No 1-_,_2,-x, I j

1- Z_q - x,t 2
(62)

Note that for N = 2 (conventional differential detection) and M = 2 (binary

DPSK),

^ 2 =4
6i = 0

in which case, (61) agrees with (62).

(63)

Comparing (61) with (62) we observe that, for multiple symbol differential

detection, the equivalent squared Euclidean distance measure per trellis branch
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is N 2 - 1812. We now examine in detail the algebraic structure of N 2 - 1812. In

particular, we shall show how N 2 - iS12 can be expressed as a squared Euclidean

distance of an _equivalent" trellis code with iarger multiplic-ity. Once this

association is made, this "equivalent" trellis code then serves as the

mathematical tool by which the foregoing analysis in [3] can be directly applied

here.

7.1.1 The Construction of an Equiv .al(_nt Multiple Trellis Code with Squared

Euclidean Distance Measure ......

Here we show how to take a trellis code of multiplicity N-1 and distance

measure N 2 - I_l 2 and construct an equivalent (in performance) code with

larger multiplicity but a squared Euclidean distance measure. For simplicity

of explanation, we will start with the case N = 3 which corresponds to only

one additional symbol of observation relative to conventional differential

detection.

From (57) and (60), we have that

I_ _-.-2 12N__18,]2=N_ nx (', :<,).i- • .L *-'-"_*-"-"1
I,,=0 ,,,=0 /

I N-2 N-n-2 12
_' 1-'Ix(O _<')" /

= N2- + 1__..=oii.,=oit t-.-.¢-,-.-., I

For N = 2, (64) simplifies to

(64)

-¢+)-"(+)'12 (65)N 2 -18+I+= 4 -11 +..,+.+,,.+,

Since there is only one MPSK symbol per trellis branch, i.e., multiplicity equal

to one, we can simplify the notation in (65) to

N= 18,1_=4_1, .,.,2 ,.2 ^.- +x,+,I =4-(,+lx, l_,t +2Re{x.,x,})

=2-2Re{x, Ji'} =lx,-_,4' (66)

Thus, for conventional differential detection, N 2 - I_ii 2 yields the squared

Euclidean distance measure as one would expect.

For N = 3, (64) becomes
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(i)^(i)* (1) ^(i)* _(i) _(i)*12
N z- [_i[z = 9 -11 + x k x_ xk_lxl,_ 1 + .,,k_v_k_ll

(i)"(i)" (i)"(i)" (i)"(i)*
=9-(3+ 2Re{x k x_ Xk_lXk_l}+ 2Re{x:i_)vf:'__;} + 2Re{x k x_ })

= 6 - _,[2- r"l"¢"x¢"-t- x°'-fc°'kk-12_1_ _[2- lx:_l- .?c°'k__2_!_ (2 -Ix:"- ./:ii 2)

= _1 - _¢ok-_112+ I-",tI-,..0__ _C'q2k I + _kco_¢,_._,,,_i--"'k:CO:O_..,,,.k_qf'

(67)

The first two terms in (67) represent the squared Euclidean distances

associated with the two symbols assigned to the ith trellis branch and as such

their sum would be the squared Euclidean distance for this branch. The third

term in (67) can be interpreted as follows. Note that the product of two MPSK

symbols, say x k and x m, is indeed another MPSK symbol whose phase is the

modulo M sum of the phases of x k and x m. Thus, if the MPSK symbols are

represented by their equivalent M-ary numbers, e.g., eJ2gm/M --_ m, then the

third term in (17) represents the squared Euclidean distance associated with a

symbol which is the modulo M sum of the first two symbols assigned to that

trellis branch.

As a simple example of the above construction, consider the multiple

trellis code illustrated in Figure 8 which has multiplicity k = N - 1 = 2. This

code is the optimum 2 state, k = 2, rate 2/4 trellis coded QPSK designed for the

AWGN. Computing the performance of this code with a three symbol

multiple differential detection scheme, the distance measure N 2 - 1_512 is then,

according to the above, mathematically the same as computing the

performance of the k = 3 trellis code in Figure 9 and a squared Euclidean

distance measure. Note that the third symbol assigned to each branch in

Figure 9 is the modulo 4 sum of the first two symbols on each path of that

branch.

The above technique for generating the equivalent code can be generalized

to arbitrary N. In particular, from (64) it is straightforward to show that 6

6For simplicity of notation, we omit the "i's" on the variables with the understanding

that we are dealing with the ith branch.
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(68)

Once again the first term in (68) represents the squared Euclidean distance

associated with a branch in the N-1 multiplicity trellis code whereas the

remaining terms represent the squared Euclidean distances of the additional

symbols that must be assigned to each branch in accordance with modulo M

sums of the previous symbols.

It is important to emphasize that the trellis code of Figure 9 (or, more

generally, the one that would be constructed from (68)) is strictly a

mathematical tool that is useful for performance analysis. The actual trellis

code that would be used for an N = 3 multiple differential detection of rate 2/4

trellis coded QPSK would be a multiplicity 2 code such as that illustrated in

Figure 8.

7.2 An Asymptotic (Large SNR) Evaluation of Pairwise Error Probability

As previously mentioned, finding an exact closed form expression for the

pairwise probability of (59) is difficult due to the dependence of the covariance

of 1/i and @i on the summation index i. Nevertheless, if one is willing to

settle for asymptotic (large Es/N 0) results, then it is possible to define a

procedure which will allow approximate evaluation of pairwise error

probability.

To see how this comes about we first recognize that the decision variable is

a special case of the quadratic form discussed in [10: Appendix 4B]. Thus,

following the approach taken there, it is straightforward to show that for the

specific case at hand here where the second central moments depend on i,

[10: Eq. (4B.9)] generalizes to

(69)
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where

= ]

[(+)q, ,r]-'vi= N 2- 6
(70)

with 8i defined in (60) and _ > 0 a parameter that can be selected, as we shall

soon see, for convenience in defining the contour path of integration. At

this point, we cannot proceed further with the procedure taken in

[10: Appendix 4B] due to the dependence of v i on i.

A technique for evaluating (70) in the limit of large PT/N 0 = Es/N 0 is

discussed in Appendix D and is based on a variation of the method of

stationary phase for analytic functions [13]. In order to apply this technique to

(70), we first rewrite it in the normalized form

e(_x--+x_')= --

where
2_j a--++e z_=_ _i2z_+ 1 /:_"tNo '=' _i2z2+ 1 J-

(71)

_l=N

a: =&:-Ia,t:

¢,=L_= [ N:-18,I:
v, r (72)

and e'= e/Vimin where imi n is the value of i that results in the minimum

value of I8i I, i.e., the trellis branch along the error event path with the largest

equivalent squared Euclidean distance N2 - 18i 12. The integral in (71) is now

in the form of (D-l) where

g(z)=_lO 1z . ¢;;+1

_-i _i2z2+ 1 (73)

Before considering the general result for an error event path with an
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arbitrary number of branches B, we shall show that, for B = 1 (a one branch

path), this approach gives the identical result to (36) for the uncoded case. In

particular, for B = 1, we have from (72) that _1 = 1, and thus letting 8 = 51, the

appropriate 7 critical point (value of z where f'(z) = 0) of (73) is given by

Also, note that since the integration contour in (71) is selected to pass through

the critical point of (74), then
=

(75)

The real and imaginary parts of f(z) evaluated at the critical point of (74)

aregivenby ....
• = ; . =

Also,

#,(z0) = Re{f(z0) } = 0

=N-181
@'(z°) = Im{f(z°)} 2

j (N + lai)_
f(z0)=: 181

N+[6 N+ 6
g(o) 1N__*leI 21_1

(76)

(77)

Finally, substituting (76) and (77) into (D-13) gives the desired result

- '1 l) exp- w-lab

2 No

(78)

which agr_s _th (36)•

7Another critical point of f(z) occurs at

• N+lsI
Zo=l -181>J

However, this point results in the integration contour passing through one of the

singularites of g(z) at z = j and thus, in accordance with Appendix D, is not allowable.
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For an error event with an arbitrary number of branches, B, we reason as

follows. Since the parameters {_i; i = 1,2,...,B} in (72) have been defined such

that their values are all less than or equal to unity, then from (73) we observe

that, aside from the singularity of g(z) at z = 0, all of the singularities of f(z)

and g(z) lie on the imaginary z axis in the interval j < z < oo. Furthermore, it

is shown in Appendix E that there exists a unique critical point of f(z) in the

interval 0 < z < j. Denoting this critical point by z 0 = JY0 (unfortunately, one

cannot, in general, find a closed form expression for z 0 analogous to (74) and

thus one must resort to numerical evaluation), then the integration contour

in (71) should again be selected to pass through this point, i.e., choose _' ---Y0-

Furthermore, the contour should be tailored so that it does not pass through

any of the other critical points of f(z) should they occur at values of z = a + jE';

a#0.

From (73), we observe that for z 0 = JY0, f(z0) and g(z 0) are purely

imaginary, i.e.,

B 2tt

f(gaY0 ) = Jd.._ _ -J_'l,J0,

.I s I A

- (79)

Also, the second derivative of f(z) evaluated at z = z 0 is also purely imaginary

and given by

_14_i_31 &

- i'_'_ 2 _:2[a' - 3a2'_Y° + 3_'_'%2 = Jq3(Y0) (80)
f"(JYo) - J_., _i / /, = z.2_s

Then, using the results of Appendix D, in particular, Eq. (D-13), the pair-

wise error probability of (71) is asymptotically approximated by

which is of the same functional form as (78).
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8.0 Evaluation of an Upper Bound on Bit Error Probability

An upper union bound on the average bit error probability is obtained

from the pairwise error probability as

Pb < "_ _., a(x_.,_)p(x_.)P(x_ --) __) (82a)

where a(_x,_)) is the number of bit errors that occur when x is transmitted and

x is chosen by the decoder, p x(__)is the a priori probability of transmitting x and

C is the set of all coded sequences. If the pairwise error probability is upper

Chernoff bounded as in Section 7.1, then one must in addition optimize over •

the Chernoff parameter, in which Case (82a) _b_-_s ..... _ _

Pb < rain _._ _.,a(x__,__)p(x_.)P(x_._ __)
x,_F.C
-w

(82b)

8.1 Evaluation by the Transfer Function Bound Approach

When the pairwise error probability is upper Chernoff bounded, then an

efficient procedure for evaluating (82b) is the transfer function found

approach applied to multiple trellis coded modulations in [7]. In particular,

the trellis codes are represented by a pair-state transition diagram [14]. Each

pair-state (s_,_) corresponds to a pair of states s_ and _ in the trellis diagram.

Thus, a transition between pair-states (si,_ _) and (si.l,si._) in the transition

diagram corresponds to a pair of transitions in the trellis diagram, i.e., s_ to s=._

and _ to _._. Associated with each of these trellis diagram transitions are the

k' MPSK symbols 8 corresponding to a sequence of nk input bits (an

information symbol) to the multiple trellis encoder. Thus, the transition

between two pair-states in the transition diagram is characterized by a

function of the squared Euclidean distance I£_- z_[2; i = 1,2,...,k' between the

corresponding k' MPSK output symbols 9 and the Hamming distance

between the corresponding input bit sequences.

8Here, k' refers to the extended multiplicity of the equivalent code as discussed in the

previous section.

gHere z_ and _i denote the correct and Incorrect MPSK symbols assigned to a trellis

branch in the equivalent code with extended multiplicity. As such, the first k of these
symbols will be identical to the xi's and ,_'s, respectively, whereas the remaining

symbols represent modulo M sums of these first k in accordance with the construction
procedure discussed In Section 8.1.



27

Based on the above discussion, each branch between pair states in the

transition diagram has a gain G of the form

A(I-XN) ^ 2

No '
G = __, I a t k" '--' : = 2_-d I f (83)

1- ;13Zig ,- z,I2
i=l

where I is an index, nk is the number of bits input to the trellis encoder in

each transmission interval, and

4,t (1-;iN)x

a D 1-x_
/(x,_,)=

l-ZZx

with D the Bhattacharyya parameter [11,14] defined by

(84)

E, ) (85)D a__exp 4N °

Also in (83), the summation accounts for the possibility of parallel paths

between states in the trellis diagram. The transfer function (the sum of all

possible path gains) of the transition diagram is denoted by T(D,I) and, by

comparison with (82b), the upper bound on average bit error probability is

given by

P_<minl dT(D,l)l, _
_nkdI =

(86)

8.1.1 A Simple Exam. pie

To illustrate the foregoing theory, we consider, as a baseline, the simple

case of a 2 state, rate 1/2 trellis coded QPSK designed for the AWGN. The

appropriate trellis diagram for such an Ungerboeck design is illustrated in

Figure 10. If indeed we are to detect this coded modulation differentially with

N symbol observation, then we must first construct a multiple trellis code

with multiplicity k = N-1 which would have identical performance as the

original k = 1 code of Figure 10 if conventional differential detection (N = 2)

were used for both. 10

1°Note that the construction of such an equivalent (same performance) multiple trellis
code from a unit multiplicity (Ungerboeck-type) trellis code can always be performed
whereas the reverse is not necessarily true. Also note that the multiple trellis code does
not require a different encoder than that used for the unit multiplicity code.
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The particular case we shall consider here is N = 3. Thus, we need to

transform the trellis diagram of Figure 4 into an equivalent multiple trellis

diagram with multiplicity k = 2. The procedure for doing this is to perform a

particular type of Cartesian product of the transition matrix of the code in

Figure 10 with itself. Letting

T=[ x°° x°q (87)xl0 x,j

represent the transition matrix of a 2 state code with no parallel paths, i.e., xij _

is the MPSK symbol assigned to the branch corresponding to the transition

from state "i" to state "j", then the appropriate transifign matriX for the

equivalent multiple trellis code is

P="o'/
.,.<,,:r o,lor'*x°'l"--""''",,o,.x,,,

,_x,o.,,,..,,x,o (.,,o.x,q¢x,,,.,,o,1
kxH, x_o) kxn,x_l)

From (75), we see that each branch in the equivalent trellis code is

characterized by two parallel paths with code symbol assignments in

accordance with the 2-1uples in T(2).

(88)

Applying (87) to Figure 10, we get

and thus, from (75), the transition matrix of the equivalent code is given by

- _j=_r,,o_ c_o_
lt34/ ks,s) j

which generates the trellis diagram illustrated in Figure 11. Note that this

trellis is different than that illustrated in Figure 8 for the same rate 2/4 coded

QPSK. As such, Figure 11 does not represent the optimum muiltiplicity two

code.

Figure 12 illustrates the pair-state transition diagram corresponding to

Figure 11 and has the transfer function
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4ac
T(D,I) = --

1-2b

exp(. Eb 42 (1--22))
I N O 1-422 /

a = 2 1 -- 4)], 2 = .., f(4, 2 )

l N O -222
b - ._- 1 -- 222 = ,,, f(2, 2 )

exp(" Eb 22 (1 - 22)')

1 [_ N O ) =b
C'-'--

2 1 --222 I (91)

where f(x,)0 is defined in (84) with N = 2. Differentiating (91) in accordance

with (86) gives the desired expression for the upper bound on bit error

probability, namely,

E b 22 (3- 822)
P, <minf(4'Z)f(2'2)= . (1_222 _ exp N0(l+22)(1_222)e

( (Eb22(1--2'_)') 2b-- X (1--f(2,2))2 mln[_) 1-222-exp , No (1-222)

The upper bound on Pb of (92) is plotted in Figure 13 versus Eb/N 0.

(92)

To apply multiple symbol detection to the trellis of Figure 11, we must first

convert it, in accordance with Section 8.1, to an equivalent trellis diagram

with a Euclidean distance measure for all its symbols. This mathematically

equivalent trellis diagram is illustrated in Figure 14 for N = 3. Figure 15

illustrates the pair-state transition diagram corresponding to Figure 14 and

has the transfer function

4ab
T(D,I) = 2c +

1-2d

a= 1(I+ 12)f(8,2); b= 1[(2 + I)f(4,2 ) + If(8,2 )]

c=2If(8'2); d=4[(2I+12)f(8'2)+I2f(4'2)] (93)

where f(x,_) is defined in (84) with N = 3. Differentiating (93) in accordance

with (86) gives the upper bound on bit error probability as
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11f(4,_,)+5f(S,_,)_5f(4,_,)f(S,_)+1f2(4,_,)_7f2(8,_,)l

(94)

The upper bound of (94) is superimposed on the results from (92) in Figure

13. Also included in this figureare simulation res_ts_c0rresponding to the

exact performance of the system for N = 2 and N = 3.

We observe from Figure 13 that the curves corresponding to the Chernoff

bounds of (92) and (94) are quite close to one another_The reason for this is

that, forN = 3_ the _und!smuchlooser than it is forN = 2. To understand

the reason for this, we compare the exact result (or its asymptotic

approximation) obtained foruncoded multiple - s_bolDPSK with what _

would have been obtained by using a Chernoff bound on the pairwise error

probability. In particular, if instead of the asymptotic approximation of (36)

the pairwise error probability were Chernoff bounded (as has been done here

in the coded case), then one would obtain a relation analogous to (61) but

without 6e proau6 since,--forthe uncodM-ca_,_thenumber 0f;bkahches in an

error event, B, is equal to one. If then one were to minimize only the

exponential term in (61) with respect to K (global minimization is difficult to

accomplish in closed form), then the optimum Chernoff parameter becomes

Kop t = 1/(N + 181 ) which when substituted in the Chernoff bound gives

}
Comparing (95) with (36), we observe that both the approximation of the exact

result and the Chernoff bound yield the same exponent; however, the

Chernoff bound does not produce the inverse square root of symbol energy-

to-noise ratio behavior which is all important in distinguishing the

performance of conventional from multiple symbol differential detection.

Thus, using the Chernoff bound of (95) rather than the approximation of the

exact result as in (36) to calculate the union bound on bit error probability for

multiple symbol differential detection of uncoded MPSK would also result in

a loose upper bound as we have observed in the coded case.
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For equivalent trellis di.agramswith parallel paths (as is the case in the

current example - see Figure 14), we Can improve upon the above as follows.

Consider the terms in (82b) due to the parallel paths. Since parallel paths are

one branch in length, then for these terms we can use the exact (or large SNR

approximate) result for P(_x_-_ ;%) from the uncoded results in Section 3. In

terms of the evaluation of Pb by the transfer function method, what we do in

effect is to subtract the portion of the transfer function due to the parallel

paths and apply the Chernoff bound to only the remaining portion of the

transfer function. Mathematically speaking, this is equivalent to rewriting

(86) as

Pb < P,,o+ minl d[T(D,l) - T0(D,l)l,= 1 (96)
x nkd/

where Pb0 is the portion of Pb contributed by the parallel paths; this portion is

evaluated by the exact (or large SNR approximate) result, and T0(D,I) is the

part of the transfer function due to these parallel paths. The amount of

improvement obtained using (96) instead of (86) will be significant when the

terms due to the parallel paths dominate the error probability, i.e., they yield

the minimum equivalent squared Euclidean distance (N 2 - I BI 2) over all

error event paths.

For the example under consideration, the term "2c" in (93) results from

the parallel path in Figure 14, i.e., T0(D,I) = 2c. This, in turn, contributes the

term (1/2)f(8,_) in (94) which corresponds to the minimum equivalent

squared Euclidean distance N 2 - 1512 = 8. Subtracting this term from (94) and

replacing it by the asymptotic (large SNR) approximation isee (36)]

_':7 2/E. N+ISI exp - Eb (N-

No

where for this example, N = 3 and

lal= = = 1 (98)

then, from (94), (96), and (98), we get the approximate tighter upper bound
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q| '7

)+5:(8,:L)-5/(4,:t):(8,:t)+_._:'(4,:t)-__:'(8,:t),|
3.... "_

(99)

The bound Of (99) is superimposed onthe results in Figure 13 and iS Seen to

yield an improvement over that corresponding to (94).

8.2 Evaluation Using the Asymptotic Approximation to Pairwise Error

Probability

The upper _und of (82a)together with (8i) has been evaluated for the

example under consideration. In performing this evaluation, we have kept

only those error event paths which yield a significant contribution to the

sum. The results are also illustrated in Figure 13 and are seen to represent an

improvement over the upper _bounds determined in Section 8.1. However,

since for thiS example, the trellis Contains a paralle-1 path which will dominate

the error probability performance at high SNR, then the upper bound of (99)

is quite close to that obtained here using the asymptotic approximation to

pairwise error probability. For trellises that do not contain parallel paths, the

approach leading up to Eq. (99) cannot be used and thus one must employ

either the loose Chernoff bound or the asymptotic approximation method.

The same upper bound of (82a) together with (81) can also be used for

conventional (N = 2) differential detection of rate 1/2 trellis coded QPSK. For

the example in Section 8.1.1, the result is illustrated in Figure 13 and is again

seen to agree quite well with the comparable simulation results.

Another Example

Figure 16 illustrates error probability performance results obtained by

simulation for a 16 state, rate 2/3 trellis coded 8PSK using conventional

(N = 2) and multiple (hi = 3) symbol differential detection. This code, which

is optimum on the AWGN, has the transition matrix [9: Fig. 7]
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We observe from this figure that in going from N = 2 to N = 3, an

improvement in Eb/N 0 performance of about 0.75 dB is obtained for the

range of bit error probabilities illustrated.

9.0 C0nclusion8

We have demonstrated a multiple symbol differential detection technique

for MPSK which is based on maximum-likelihood sequence estimation

(MLSE) of the transmitted phases rather than symbol-by-symbol detection.

The performance of this multiple symbol scheme fills the gap between ideal

coherent and differentially coherent detection of MPSK. The amount of

improvement gained over differentially coherent detection (two symbol

observation interval per decision) depends on the number of additional

symbol intervals added to the observation. In the limit as the observation

interval approaches infinity, the performance approaches that of ideal

coherent detection with differential encoding. Practically, this limiting

performance is approached with observation times (decision memory) only

on the order of a few additional symbol intervals. Thus, even in situations

(e.g., benign environments) where one would ordin_ily not turn to

differential detection, it might now be desirable to employ multiple symbol

differential detection for reasons related to simplicity of implementation. For
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example, the acquisition and maintenance of a locked carrier tracking loop as

required in a coherent detection system is not needed here.

As for the uncoded case, the use of multiple symbol differential detection of

trellis coded MPSK can also offer an improvement in error probability

performance over conventional (two-symbol observation) differential

detection of the same coded modulation. Again only a slight increase in the

length of the observation interval is necessary to demonstrate a significant

improvement.
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Figure 9. Trellis With Squared Euclidean Distance

Measure That is Mathematically Equivalent to

Figure 8

O 0

Figure 10. Trellis Diagram for Conventional Rate 1/2

Trellis Coded QPSK
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Figure 11. Trellis Diagram for Rate 2/4 Multiple Trellis

Coded QPSK Equivalent to Figure 10
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Figure 12. Pair-State Transition Diagram for Trellis Diagram of Figure 11
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Appendix A

Evaluation of the Pairwise Error Probability

In [3], it is shown that for complex Gaussian random variables z I and z 2

with identical variances and arbitrary means and covariance, the pairwise

probability of error P,-{Iz,l_>Iz,l_}isgivenby

Pr{Iz_'>Iz,r}- ½[1-Q<4_,4_)+_<4_,4_)] (A-l)

where Q(0_,13) is Marcum's Q-function [4] and

{:}: js'-s'l
with

(A-2)

S " 1,-i* S ±117-12
=2 Iz_l; _-21"21

N'_-I z,-_,---"_=± z_-21 '-1' 21 a'

p'_-_(_,-_,)'(z,-g)
_==_{p};O,=a,g{;,},o,==g{_}

Here we associate z land z 2 with w(A_.._) and w(A____),respectively, of (23).

(A-3)

Using (1) and (2) in (A-3), we get
N-i-2

N-I -J Z Aok-i-m

i=0

N -i-2

N-I -'/ Z A_m'-i-=

_2 = ff_Zeitt-ie ,,,=o = 2._eJtt-_',18
i=0 (A-4)

where

PRECEDING PAGE BLANK NOT FILMED
IHTENTIONAi_? BLANK
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N-i-2

J_(_'_-,-.-_¢_-,-.)

i=O

where it is understood that the summation equals zero if the upper

summation index is negative. Substituting (A-4) into (A-3), gives

(A-5)

s, = my2; s2= _812
Also, using (3)

(A-6)

and

N.= - e _ly:,_,e (A-7)

Dr-i-2 t_- ,.- 2 "_

1 _-l_-l )( _=:$k-i-,,,- _=:$k-,,-,,,Jp=
a.,_ • z iz0 4--0

:_-,-2 . )N 1 J[ E Aok-i-m-Aok-i-m

= l..___'2No e k, ,,=o =6.

2N, _ T N (A-8)

Finally, substituting (A-6) - (A-8) into (A-l) gives the desired result, namely,

(A-9)

where

where Es

:]
= Pr is the energy per data symbol.

(A-10)
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Appendix B

Proof of Eqs. (42) and (48)

Starting with the definition of _i in (27), we now write it in the form

where

N-I

8 = 1 + _,, e ja' (B-l)
i--I

,6 i

Oti= Y, _j,_N+l+,, (B-2)

Thus, 8 is the sum of N unit vectors the first of whose arguments is zero and

the rest of whose arguments are increasingly larger sums of the phase errors

in accordance with (B-2). Note that the values of the accumulated phase

errors, 0q's, also range over the set + 2_m/M; m = 0,1, ..., M/2 - 1. We are

interested in determining the various possible solutions for the 8_'s such

that the maximum value of the magnitude of 8, namely 181ma x of (49) is

achieved.

For arbitrary M, there are four situations that achieve 181 max" We shall

refer to these as cases 1, 2, 3, and 4 which are described as follows.

Case 1: All N-1 vectors eJ°q; i = 1, 2, ..., N-1 must be collinear and equal to

eJ2m/M. Thus, 0q = 2m/M; i = 1, 2, ..., N-1 which, in accordance with (B-2),

has the single solution

2_

(_f_,_N+2=--_-; _k_A,+,=0;i= 3,4,...,N (B-3)

Case 2: All N-1 vectors eJ°q; i -- 1, 2, ..., N-1 must be collinear and equal to

e-J 2_/M. Thus, a i = - 2_/M; i = 1, 2, ..., N-1 which, in accordance with (B-2),

has the single solution

2_

_k_jv+2 =---_-; /_k_N+_ = 0;, i = 3,4,...,N (B-4)
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_: Any N-2 vectors ejai must be collinear and equal to eJ0 = 1 and the

remaining vector must be equal to eJ21t/M. For this case there are N-1

different solutions. For example, suppose first that 0tI = 2_/M, and a i = 0;

i = 2, 3, ..., N-1. Then,

2g 2ff

_._N+2=-_--; _._N+.=---_-; /_._N÷,=0;.i=4,5 ....,N (B-5)

Next, let a 2 = 2x/M, and ot i = 0; i =1, 3, 4, ..., N-1. _en, ....

2g 2g

_k_n+3=--_.-; _t___v÷4=--_-; _tD__N+,=0;i=2,5,6 .....N (B-6)

In general for 0_¢ = 2n/M, t = 1, 2, ..., N-2 and (zi = 0; i _1, 2, ..., N-I; i _ t, we

have the solution

=7= ¸

2_t 2_r

_k_N+,+l=--_-; _k_N+,+2=---_-; _k_M+,=0;i=l,2 .... l,l+3 .... ,N

Finally, for CtN_ 1 = 27t/M and 0ti = 0; i = 1, 2, ..., N-2, the solution is

(B-7)

2/t

_k = "-'M'_ _M_k-bl+i _--"0;i= 1,2 ..... N- 1 (B-8)

Case 4: Any N-2 vectors eJai must be collinear and equal to eJ0 - 1 and the

remaining vector must be equal to e-J 2x/M. For this case there are again N-1

different solutions which are identical to those described by (B-5) to (B-8) with

2x/M replaced by -2x/M and vice versa.

We note that for cases 3 and 4, N-2 of the solutions are characterized by

having one 5¢ = 21t/M, one 5¢ = - 2_/M, and the rest of the 5¢'s equal to zero.

The remaining solution has one 5¢ = 2x/M and the rest of the 8¢'s equal to

zero.

To compute the accumulated Hamming distance of (47), where w(u,u')

corresponds only to those error sequences that result in 151 max, we proceed

as follows. We assume a Gray code bit to symbol assignment where

8_ = + 2n/M corresponds to an adjacent phase symbol error and thus a single

bit error or a Hamming distance equal to 1. Also, a value &_ = 0 implies no
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symbol error or a Hamming distance equal to zero. Thus, the following

accumulated Hamming distances occur for each of the four cases.

Case 1:

w(_,_)=l (B-9)

Case 2:

w(_u,__)= 1 (B-10)

Case__3:

w(_u,__)= (2)(N- 2)+ (I)(I)= 2(N- 2)+ i (B-11)

Case 4:

w(u,_) = (2)(N - 2) + (1)(1) = 2(N - 2) + 1 (B-12)

Finally, the accumulated Hamming distance is obtained by summing (B-9)

through (B-12) which yields (for N > 2)

__w_,__)=4(N-1) (B-13)
a#,.A_

which agrees with (48).

For N = 2, Cases 3 and 4 do not occur since N - 2 = 0. Thus, the

accumulated Hamming distance is merely the sum of (B-9) and (B-10) which

yields

_w(g_,__)=2 (B-14)

in agreement with (47).

For M=2, e.J27r/M - eJ_ = e-J 27r/M and thus cases I and 2 are one and the

same and similarly for cases 3 and 4. Thus, for binary multiple bit DPSK, we

have only half the solutions in which case (B-13) becomes
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_w(_u,__) = _'2(N- 1); N > 2

,_A..t,_./ [1; N = 2

which agrees with (42). Q.E.D.

(B-15)
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Appendix C

Evaluation of the Chernoff Bound on

Pairwise Error Probability

Here we derive an upper Chernoff bound on the pair-wise error

probability Pr t) i > r/i . In particular, from the definition of the
i=1

Chernoff bound [11]

(C-1)

where "E" denotes the expectation operator and _'0 is the Chernoff parameter

to be optimized. The remainder of this appendix is devoted to an evaluation

of Ele_°C_'-_')4__°) I. For simplicity of notation, we shall drop the subscript 'T'

with the understanding that we are referring to the ith branch in the trellis

paths under consideration.

From the definitions of 77, and t) we can write the difference t) - 77 in the

matrix form

t) - 77= _.w'TF_.w (C-2)

where

and the "T" denotes the transpose operation. Here

(C-3)

J_--n--2

N-t -] _ dcj_-m-M

w(_) --_ r._.e ..0
a=0

N-n-2

N-I -J _-----*A_k-"-m

paso (C-4)
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with

r k -- 2._ei(a÷#D + n t (C-5)

Substituting (C-2) into (C-1), we get an upper bound of the form given in

[8: Eq. (21)] which can thus be evaluated as (see [12] for a derivation of the

result)

• det(I - 2_,oR'F) - (C-6)

where I is the identity matrix,

and

with

(I- 2X0R*F).

L_{_<_,>,_¢.}jw

U-1 -J E a_t-n-=

eJ(e+ot-De _=o
m=0

N-a-2

H-1 -J E aok-n-_

e)(o+o_-De _=0

m=0

F2NoN 2No_ *-

I/-C r,
r=½_{(wa>'_ am_}=7/2_8 2N;_

L r, T.

C-7)

(C-8)

N-a-2 N-n-2

( a,k "-'-aCk-'-'). N 1 j E _tk-'--

..-, ,Z - "=Xe .,-0 (C-9)8=_._e ,,,-o
_=0 Jr=0

To evaluate (C-6) we need to compute the determinant and inverse of

Using (C-3) and (C-8) these are evaluated, respectively, as

and

22
det(I 2)_oR*F) = 1 o 7.2 +

(C-IO)

1- I _ -2_o
(I - 22°R'F)-_ = det(l - 2A,oR'F)/22o No($" l_2;to NoN/

L _ w,3

(C-11)



where E s

(C-12)

q

Reinserting the subscript 'T' on 8 to denote the fact that (C-12) applies to the

ith trellis branch, and substituting the result in (C-1) gives the desired

Chernoff bound on pairwise error probability, namely,

,xp _: I-Z_N'-]a,]'] J
pr{B=__1,,> __ir/i[A(_}< ,=it_ ,_X2[N2_[6,[2] ... (C-14)

a_ (i),_a#(0

The value of _. that minimizes the bound of (C-14) must be found by

numerical evaluation.
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Appendix D

Asymptotic Evaluation of Certain
Integrals of Analytic Functions

Let f(z) and g(z) be meromorphic functions of z on the complex plane, C.

Consider the integral

It(Y) = J g(z)exp(jyf(z))dz (D-l)
E

where the contour F does not pass through any :singularity of f(z) or g(z) and

we assume that y > 0. Although the contour is usually specified, we can

clearly choose another contour F 0 such that the integral in (D-l) remains

unchanged, i.e., IF(7) = IF0(Y) provided that the region bounded by F and F 0

does not contain any Of the sin_lar points of the integrand. In particular, the

selection of the contour F 0 will be an important consideration in what

follows.

We now describe a procedure for evaluating (D-l) in the limit of large y,

that is, we seek the first term of an asymptotic expansion of IF(7) as y ---) _.

The following-assumptions, which are applicable to the case at hand, are

made:

(i) The contour of integration F 0 may be chosen to pass through at least one

critical point z 0 of f(z), i.e., a point in C where f'(z 0) = 0 and the prime denotes

differentiation. The critical points of f(z) on F 0 are assumed to be non-

degenerate, i.e, f"(z 0) _ 0 if f'(z 0) = 0.

(ii) Im{f(z0)} is an absolute minimum of Im{f(z)} for z _ F 0.

Z

=

(iii) The functions g(z), g(z)/f'(z), and g'(z)/f'(z) decay sufficiently rapidly as to

ensure absolute convergence of the integrals that appear.

Let {zi; i _ T1}denote the set of critical points of f(z) that lie along F 0. Let

X(z) be an infinitely differentiable function which is identically equal to unity

in a small interval J i containing z i and vanishes outside Ji D J i where Ji is a

small neighborhood of z i in F 0. Writing g(z) in the form
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g(z) = X(z)g(z) + (1 - X(z))g(z) (D-2)

then we can easily see that IF(7) can be written as a sum of integrals of the

form

ll(Y)= Sg(z)exp(jYf(z))dz
Xi

l_(y) = i'g(z)exp(jyf(z))dz
• , (D-3)

where Ji contains a unique critical point of f(z), namely zi, and K i is a contour

(possibly infinite) which contains no critical points of f(z). If K i is unbounded,

then the integral over K i is understood as an improper integral in the

standard manner. The contour F 0 is composed of the union of {Ji, Ki; i • _}.

Also, the function g(z) vanishes at the end points of Ji and K i. We now

investigate the asymptotic behavior of Ii(7) and I2(7).

To evaluate I1(7), we should map the contour line integral into an integral

along a portion of the real line parameterized by the variable t. Thus, let _i(t)

be a continuously differentiable mapping, with nowhere vanishing

derivative, of the interval t • (0,1) onto the contour K i. Then, keeping in

mind that K i contains no critical points of f(z), the first integral in (D-3) can be

written as

I_( 7) = J: g(_ (t))exp(jT f (_ (t)) _'(t)dt

., dexp(jY f (¢ (t)))

= J_ ¢# jyf'(¢(t)) g(¢(t))dt

- :T J: :!_(;:_)dexp(j_' f (E (t)))

Integrating by parts results in

(D-4)

&(r) = jr/(c(,)))l' ] , . d g(c(,)),,:.(,<,,)io-
(D-5)
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The first term in (D-5) vanishes in view of the assumption of rapid decay of

g(z)/f'(z) if K i is infinite, and the vanishing of g(z) at the end points t = 0,1.

Therefore,

1 1 . d

whose absolute value is upper bounded by

(D-6)

1 I " t d g(_(t)) dt
'll(Y)t < "_ _ exp(-_'Im {f(_ "( ))}I'_'(_ /

Finally, since by assumption (ii),

(D-7)

m {f )}_inIm{f(z)}=Im (z i =c i
z

then, in the integration interval of (D-7),

exp(-yIm{f(_'(t))})< exp(- yc,)

and hence,

(D-8)

(D-9)

I/1(y)[ _<C_ exp(- yq); f la I g(c<'))C,=

(D-10)

The second integral of (D-3) involves evaluation in the neighborhood of

the critical point z i under the assumption that the critical point z i is a

minimum of Im{f(z)}, z _ F 0. The asymptotic expansion of this integral is

given in [13: Chap. 8]. Using the first term as an approximation to I2(T), we

obtain

_ ] 2tr_..__j exp(jyf(zi))g(zi) (D-11)
12(Y)=_Tf.,(z,)

Once again considering the absolute value of this integral, we get

1 27rj t[12(_Y_= D:-_exp(- yq); D_ =l_g(z_ (D-12)

which clearly dominates I Il(Y) I of (D-10). It is easy to see that the

contribution of the critical points which are not minimum of Im{f(z)} are

dominated by l I2(Y) I. Therefore, for large y, IF(Y) is asymptotically given by
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_-,] 2n'j
Ir(Y) = ,tz__3_T f,, (-----z,)exp( jY f (z,) )g( z,)

(D-13)

where the summation is over all the critical points z i of f(z) that are absolute

minima of Im{f(z)} on F 0. Note that if z 0 is the only such critical point along

the contour F 0, then the summation in (D-13) contains only a single term.

As we shall see, in special cases of the above general theory, it is possible to

choose the contour F0 such that this is true and hence the numerical

evaluation is considerably simplified.

One very special case of the above occurs when f(z) and g(z) are of the form

[see (73)1

1 B 1

g(z) = z .I_.__z 2+ 1

B

f (z)= + j ?z2i ,
i=x _]z _+ i (D-!4)

where _i, 131, and 132i are real coefficients (note that _1 = 1) and the contour F

is the straight line extending from z = - ** + je to z = 00 + je. It is sufficient to

have e > 0 to avoid the pole of g(z) at the origin. However, as mentioned

above we should redefine the contour (to F 0) so that it passes through a

critical point of f(z). For B = 1, it can be shown that there are two critical

points both of which lie along the imaginary z axis, i.e., z i = jPi; i = 1,2. One

of these critical points, say Pl, lies below the singularity of g(z) at z = J_l = J

whereas the second critical point, say P2, lies above this singularity. Thus, in

accordance with the above, if we choose e = 91 then the contour F 0 will pass

through only one critical point of f(z) and not cross any of the singularities.

Hence, the summation in (D-13) reduces to just a single term. The details of

the evaluation are carried out in Section 8.2 of the main body of the report.

When B > 1, then

f'(z) ' =0
,=, (tj?z'+l)'

which, in general, yields 2 + 4(D-l) critical points of f(z).

(D-15)

Since it is not, in
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general, true that all the critical points lie on the imaginary z axis, one must

evaluate these critical points numerically for each particular case and then

select the contour l"0 appropriately as discussed above. It can be shown

however (see Appendix E), that for arbitrary B, there exists a unique critical

point, say z 0, on the imaginary z axis in the interval 0 < z _<j. Therefore,

since _i < 1 for 1 < i < B (see the definition of _i in Eq. (72) of the main text),

and thus, aside from the singularity of g(z) at z = 0, all of the singularities of

g(z) and f(z) occur along the imaginary z axis in the interval j < z < j_, it is

sufficient to find this unique critical point z 0 = JY0 (0 < Y0 < 1) and choose the

contour F 0 to pass through it .....

It remains to satisfy condition (ii). Let v(z) = Im{f(z)}.

computations in Appendix E, it is clear that

Then, from the

O2v(x+ h')
< 0 (D-16)

Oy
for 0 5_ y < 1. Since v(z) is harmonic, i.e., for all analytic functions f(z), we

have

then

O v(x +/y) ,9 v(x + jy)
÷ = 0 (D-17)

Ox

O v(x + :y)
> 0 (D-18)

oax2

and thus the critical point z 0 = jY0 is a local minimum of v(z) along the line

z = x + jY0 parallel to the x axis. It is straightforward to show that the contour

F 0 cart be deformed to a contour F 0' such that

1r,(r)=lr(r)
and where z 0 -- JY0 is the global minumum of v(z) on F0'.

(ii) is satisfied for the critical point z 0.

(D-19)

Thus, condition
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Appendix E

Proof That There Exists a Unique Critical Point
of f(z) Along the Imaginary z Axis in the

Interval 0 < z < j

Here we present a proof that the function f(z) (defined in Eq. (73) of the

main text or Eq. (D-14) of Appendix D) has a unique critical point (i.e., the

value of z where f'(z) ---0) along the imaginary z axis in the interval 0 < z < j.

Consider writing the derivative f'(z) along the imaginary z axis in the form

f'(JY)= Y.f;(J'y) (E-l)
i=1

where, from (D-15),

fi(JY) = _, fl2'_i_y2 - 2fl,_y + flz_

(1 - ¢i_2) 2

Evaluating (E-2) at y = 0, we have

= N _-18_l2

At y = 1, (E-2) becomes

(E-2)

(E-3)

fi(J) = _ ,f12,_- 2,fl,_, +,02,

(E-4)

The first factor in (E-4) is clearly positive. We now wish to show that the

second (bracketed) factor in (E-4) is negative. The steps are as follows:
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(N,-I_,i')'"2N(N'-t_,l')"'+(N,_l_,r),,,

2 2 I/2

,2',,.I12

: -t'+'i),.[ts,,3-t+rl,,+<o
_,_18,+,,i_ .

(E-5)

Thus, since each term in f'(jy) changes sign in the interval 0 < y < 1, there

must be at least one value of y at which f'(jy) = 0, i.e., at least one critical point

of f(z) occurs in the interval 0 < z < j. It now remains to show that there is

only one such point, i.e., the critical point of f(z) that occurs in the interval

0 < z < j is unique. We shall do this by showing that f"(z) is always negative

in the interval 0 < z < j and thus f'(z) is monotonically decreasing in this same

interval.

Consider the derivative of (E-2). After considerable simplification and use

of the definitions of ]31, _32i, and _i in (72), we obtain

(E-6)

It is straightforward to show that the sum of the first, third, and fifth terms of

the numerator are non-negative in the interval 0 < v < 1 (or equivalently

0 < y < (_i)-1). In particular,
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v+
= _2(N 2 _ -'2\I/2 4 - 26_1) v(v +2v-3)_>0 forO<v<l (E-7)

Thus,

-2(N2-1 ,12)l'2v'-4(N2-1 ,12)l'2v
< -2Nv s- 4Nv 3+ 6Nv for 0 _<v < 1

Substituting (E-8) in (E-6), we get

(E-8)

-2Nv s+ 6Nv 4- 4Nv 3- 4Nv 2+ 6Nv - 2N
f_(jy)<

(1-:)'
= -2N(v s- 3v4+ 2v3+ 2v2--31:+ I)

(1- v2) 4

_ -2N(1 - v) 3

(l_v2) 3 <0; 0<v<l (E-9)

Finally, since the derivative of (E-I) is the sum of the derivatives of each term

in the summation, and recalling from (72) that _i < 1, then from (E-9) we

obtain the desired result, namely,

f:(jy) < O; 0 < y < 1 (E-10)

or, equivalently, fi'(jY) is monotonically decreasing in 0 < y _<1. Q.E.D.

Although not of specific interest, it can also be shown that the critical

points of f(z) that do not lie on the imaginary z axis occur in pairs that are

symmetric about this axis. That is, if z 0 = x 0 + JY0 is a critical point, i.e., f'(z 0) =

0, then z I = -x0+jy 0 satisfies f'(z 1) = 0.
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